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Abstract 

 
To enhance the quality of defect detection for Printed Circuit Board Assembly (PCBA) during 
electronic product manufacturing, this study primarily focuses on optimizing the YOLOv7-
based method for PCBA defect detection. In this method, the Mish, a smoother function, 
replaces the Leaky ReLU activation function of YOLOv7, effectively expanding the network's 
information processing capabilities. Concurrently, a Squeeze-and-Excitation attention 
mechanism (SEAM) has been integrated into the head of the model, significantly augmenting 
the precision of small target defect detection. Additionally, considering angular loss, compared 
to the CIoU loss function in YOLOv7, the SIoU loss function in the paper enhances robustness 
and training speed and optimizes inference accuracy. In terms of data preprocessing, this study 
has devised a brightness adjustment data enhancement technique based on split-filtering to 
enrich the dataset while minimizing the impact of noise and lighting on images. The 
experimental results under identical training conditions demonstrate that our model exhibits a 
9.9% increase in mAP value and an FPS increase to 164 compared to the YOLOv7. These 
indicate that the method proposed has a superior performance in PCBA defect detection and 
has a specific application value. 
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1. Introduction 

Common issues such as missed soldering and component misplacement are widespread 
during the printed circuit board assembly. Currently, the detection of PCBA defects primarily 
relies on manual visual inspection and electrical testing. Although widely employed, manual 
inspection is inefficient and often experiences a decline in accuracy over time. Electrical 
testing, while capable of quickly and accurately assessing the conductivity and insulation of 
printed circuit boards through bed-of-nails testers, is constrained by probe spacing and the risk 
of potential damage or contamination. Moreover, for manufacturers producing a variety of 
circuit boards, the frequent need to change test fixtures can significantly escalate production 
costs. Therefore, traditional manual and electrical testing methods are suboptimal for PCBA 
defect detection. In recent years, many companies have adopted automated defect detection 
techniques based on deep learning to achieve flawless PCBA production. In particular, 
advanced target detection algorithms centered around Convolutional Neural Networks (CNN) 
have shown exceptional performance in defect detection tasks [1] [2]. For instance, two-stage 
detectors such as the R-CNN series [3], including Fast R-CNN [4], Faster R-CNN [5], and 
Mask R-CNN [6], as well as single-stage detectors like SSD [7][8], RetinaNet [9], EfficientDet 
[10], and the YOLO series [11][12][13][14][15][16][17], have struck a good balance between 
processing speed and accuracy. However, these algorithms have not effectively addressed the 
dual requirements of high precision and speed essential for PCBA quality inspection. 

This study addresses the issues of missing and reversed polarity in PCBA components, 
concentrating on five common defect types as illustrated in Fig. 1: missed capacitors, resistors, 
triodes, electrolytic capacitors, and reverse polarity of electrolytic capacitors. Leveraging the 
high precision and rapid detection advantages of the single-stage detector YOLOv7, we have 
enhanced the foundational YOLOv7 network model to achieve swift and efficient detection of 
PCBA defects. The primary contributions of this research include: 

 

(1) The Mish activation function enhances the model's generalization ability, thereby 
improving the quality of training. 

(2) The SEAM strengthens the recognition ability for tiny targets and increases the detection 
precision. 

(3) The substitute SIoU for CIoU of YOLOv7 can efficiently measure model performance and 
deal with model uncertainty, enhancing the robustness of the model. 

(4) The design of a brightness adjustment data enhancement algorithm based on split filtering 
enriches the training dataset and reduces the impact of uneven lighting during the shooting 
process, enhancing the model's resistance to interference in practical applications. 
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Fig. 1. Five common types of PCBA defects 

2. Related work 
Defect detection in PCBA is an indispensable part of industrial production and has garnered 

widespread attention domestically and internationally. Wang and others devised and 
implemented an automated optical inspection system leveraging machine vision to inspect 
holes in printed circuit boards (PCBs) [18]. However, the performance of optical inspection 
systems is significantly influenced by variations in lighting conditions. Reflective surfaces and 
shadows on the PCBs can interfere with the machine vision system, potentially leading to false 
alarms or missed defect detections. Nabil El Belghiti Alaoui and colleagues proposed using 
electromagnetic near-field sensors for PCBA detection [19]. By measuring the magnetic field 
above the PCBA, this method provides non-contact information about the current distribution 
and is not limited by surface contact with the PCBA. However, this method is vulnerable to 
electromagnetic interference in the environment, which can adversely affect the accuracy and 
stability of the sensor. Jeon Mingu and others proposed a method for detecting PCBA defects 
using thermal image comparison and deep learning [20]. They utilized thermal image analysis 
employing a structural similarity index map as a rule-based object detection method, alongside 
using CNN, CNN feature regions, and autoencoders for analysis. The primary limitation of 
thermal imaging is its insufficient resolution for detecting minute defects. Furthermore, the 
implementation of deep learning and thermal image analysis techniques generally necessitates 
substantial computational resources, which can pose challenges for real-time detection. 

In research utilizing the YOLO algorithm, Xu Siang et al. applied the YOLOv5 algorithm 
to defect detection in bare PCBs. They enhanced the feature fusion pathways to minimize 
information loss, effectively identifying defects on bare boards [21]. However, this study did 
not detect defects in the assembled devices on the PCB. Yih-Lon Lin and colleagues utilized 
the YOLO algorithm to detect capacitors mounted on PCBs, efficiently identifying nine 
capacitors assembled on the boards [22]. There is a broader range of assembly devices on 
PCBs beyond just capacitors, underscoring the necessity for further research to detect various 
defects across different components. They designed a coordinated attention detection head and 
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introduced feedback connections that significantly enhanced feature recognition, achieving 
excellent performance in identifying surface-mounted device components. It is important to 
note that the YOLOv7 model may face challenges such as false or missed detections, mainly 
when dealing with densely distributed surface mount devices of varying sizes, complex 
backgrounds, or blurred device edges. So, data enhancement algorithms are needed to mitigate 
the effect of image quality on detection. 

In pursuit of efficient PCBA defect identification and simplified network deployment, this 
paper initially focuses on optimizing network structure and data enhancement algorithms. 
Specifically tailored for PCBA defect detection, the YOLOv7 model undergoes optimization 
in this study. 

3. Methodology 

3.1 YOLOv7 overview 
The architecture of the YOLOv7 model is delineated into three key segments: Input, 

Backbone, and Head. Initially, images undergo data augmentation and a sequence of 
preprocessing operations during the initial processing stage before entering the backbone 
network. The backbone network performs feature extraction on the input images. 
Subsequently, the extracted features are merged in the head module, resulting in three feature 
maps of different sizes for prediction and output [23]. 

Through algorithm enhancement and composite model scaling strategy, YOLOv7 has been 
meticulously optimized for edge devices, resulting in multi-scale creation. This strategic 
approach is tailored to accommodate various inference speeds and accuracy requirements. 
These models are YOLOv7, YOLOv7-e6, YOLOv7-tiny, and others, offering adaptable 
deployment options and efficient operation across various devices. Specifically, YOLOv7-tiny, 
the most compact iteration within the series, is finely tuned for edge GPUs and adopts Leaky 
ReLU as its activation function. Its modest memory footprint (12.00M) and swift processing 
capabilities make it well-suited for PCBA defect detection in industrial manufacturing settings. 
However, while the original model's streamlined complexity is advantageous, it may not fully 
meet the rigorous efficiency and accuracy demands inherent in defect detection tasks, 
particularly those involving multiple targets. Hence, targeted enhancements to YOLOv7-tiny 
are imperative to ensure both the effectiveness and precision of detection outcomes. 

 
Fig. 2. Improved YOLOv7 network structure 
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3.2 Network architecture 
Fig. 2 illustrates the structure of the improved YOLOv7 proposed in this paper. We 

designed these modifications to optimize the original YOLOv7 architecture for the unique 
requirements of PCBA defect detection. The enhanced YOLOv7 network structure mainly 
comprises the following modules: CBM, MP, SPPCSPC, and SEAM. 

CBM Module: This foundational convolution module consists of a convolution layer, a 
batch normalization layer, and the Mish activation function. In this enhancement, the Leaky 
ReLU has been replaced with the Mish activation function to improve the model's capacity to 
handle nonlinear problems. MP Module: Serving as a downsampling module, the MP module 
considers not only the maximum value information of local small areas but also the 
comprehensive information of the whole, aiming to capture features more effectively. 
SPPCSPC Module: This improved spatial pyramid pooling framework fuses SPP with the CSP 
framework. It's designed to bolster the capability to detect densely packed targets in PCBA, 
particularly for recognizing small objects. SEAM Module: The SEAM module was introduced 
in the head part to enhance target detection, especially for recognizing dense targets on the 
PCBA board. 

Furthermore, we substitute the initial model's CIoU with SIoU to increase training speed 
and accuracy during inference. These comprehensive enhancements improve the model's 
performance and provide a more precise and efficient solution for PCBA defect detection. 

3.3 Mish activation function 
PCBA defect detection requires the identification of a diverse array of intricate defect 

patterns. The Mish activation function, known for capturing complex nonlinear relationships, 
enhances the model's expressive capability by adaptively adjusting the activation values. 
Using the Mish activation function can significantly enhance the overall performance of PCBA 
defect detection models, thereby better aligning these models with the stringent demands of 
industrial applications. 

The Mish activation function is distinguished by its unboundedness, smoothness, and non-
monotonic nature, which effectively circumvent the saturation issues inherent in traditional 
capped activation functions, unlike the rigid zero boundaries characteristic of Leaky ReLU 
activation functions [24]. Mish's smooth activation facilitates deeper information propagation 
within neural networks, enhancing accuracy and generalization capabilities. Equation (1) 
presents the mathematical definition of the Mish function, and Fig. 3 provides its graphical 
representation.  

 
 Mish=x tanh(ln(1+exp(x)))∗  (1) 
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Fig. 3. Mish function graph 

 

3.4 Squeeze-and-Excitation attention mechanism 
We have many minor PCBA defects to detect, resulting in low detection accuracy. To 

improve the detection accuracy without increasing the computational overhead, we use SEAM 
to improve the model detection performance. The SEAM enhances the feature representation 
capabilities of the model, aiming to improve the efficiency of architectures such as CNN in 
learning valuable features. The core idea of SEAM is to enable the model to autonomously 
determine each channel's significance and then reweight these channels, thereby allocating 
different attention weights among various channels. This mechanism facilitates a focus on 
feature channels containing crucial information, enhancing the model's performance. 

Fig. 4 illustrates the schematic of the SEAM. In this diagram, the incoming feature map 
X1 first undergoes a transformation operation Ftr to generate the feature map U. Subsequently, 
the map U undergoes global average pooling Fsq and is then processed by Fex through two 
fully connected layers, imparting distinct weight information to different channels. Finally, in 
the Fscale step, the weight information obtained from the previous step is used to reweight the 
feature map U, resulting in the desired feature map X2, which retains the exact dimensions of 
the feature map U. 
 

 
Fig. 4. Squeeze and Excitation Attention Mechanism 
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3.5 SIoU loss function  
The efficacy of target detection algorithms is intricately tied to the formulation of the loss 

function. Conventional loss functions for target detection primarily integrate bounding box 
regression metrics, encompassing distance, aspect ratio, and overlap ratio (e.g., CIoU, ICIoU). 
However, these methods often overlook the disparity in direction between the forecasted and 
actual boxes, a flaw that can lead to slower model convergence and reduced efficiency. This 
issue is particularly pronounced in the PCBA domain, where the multitude of components 
often concentrated in a small area can significantly degrade model performance during training 
due to the imprecision of predicted box locations. To address this challenge, our study employs 
the SIoU instead of the traditional CIoU. The SIoU integrates four cost components: Angle 
cost, Distance cost, Shape cost, and IoU cost. The function is defined as follows equation: 

 

 SIOU IOUL 1- I
2

∆ +Ω
= +  (2) 

IIoU  denotes IoU cost, ∆  denotes distance cost, and Ω  denotes shape cost. SIoU 
incorporates an angle factor in calculating distance loss and shape loss. This incorporation 
enriches the expression of the loss function but also reduces its degrees of freedom. These 
enhancements contribute to a more stable convergence process and improve regression 
accuracy [25]. 

3.6 Brightness adjustment data enhancement algorithm based on split filtering 
Data augmentation is a widely utilized technique in deep learning to generate new training 

samples via various transformations applied to the original data. Its primary purpose is to 
mitigate overfitting during training and enhance the model's adaptability and robustness to 
diverse scenarios. By introducing randomness and variability, data augmentation allows 
models to generalize more effectively to unseen data, improving their performance in practical 
applications.  

In the context of PCBA defect detection, where the target distribution is dense and numerous 
tiny components are often concentrated in the same area, detection becomes particularly 
complex. Additionally, since cameras capture all data, the reflective nature of PCB exacerbates 
issues such as uneven brightness and noise in the images. This study proposes a Brightness 
Adjustment based on Split Filtering (BASF-DAA) data augmentation algorithm to address 
these specific challenges. 

The Split Filtering algorithm primarily comprises the following steps: Image Splitting: 
Initially, the original image is segmented into four equal-sized parts, aiming to reduce the 
number of targets on a single image and lower the processing complexity. Bilateral Filtering 
for Noise Reduction: The bilateral filtering algorithm is then applied to remove image noise 
[26]. Bilateral filtering smooths the image while preserving essential edge information, 
eliminating noise, and maintaining image details by considering spatial proximity and pixel 
value similarity. Brightness Adjustment Processing: The four split image sections undergo 
brightness adjustments to address issues caused by uneven lighting and reflections. The 
implementation principle of bilateral filtering can be summarized in the following steps: 

 

(1) Parameter Definition: Define the spatial and intensity domain kernels. The spatial domain 
kernel determines the weight of the spatial distance between pixels, while the intensity 
domain kernel determines the weight of the similarity between pixel values. 

(2) Weight Calculation: For each pixel, bilateral filtering calculates weights in both the spatial 
and intensity domains, reflecting the spatial distance and value similarity between pixels.  
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(3) Filtering Process: Using the calculated weights, a weighted average is applied to the 
neighboring pixels of each target pixel to obtain the filtered pixel value. 

The formula for bilateral filtering can be expressed as (3): 
 

 ( ) ( ) ( )
( )

( ) ( ) ( )( )filtered spatial range
i, jp

1I x, y I x i, y j F i, j F I x, y , I x i, y j
W x, y ∈Ω

= + + ∗ ∗ + +∑  (3) 

Ifiltered(x, y) represents the pixel value after filtering, and I(x, y) represents the pixel value 
in the original image Wp(x, y) is the normalized weight used for filtering result normalization. 
Ω denotes the neighborhood window of the filter, typically a fixed-size window. Fspatial(i, j) 
is the spatial domain kernel function used to calculate the weights of spatial distances between 
the pixels, while Frange�I(x, y), I(x + i, y + j)� is the pixel-value domain kernel function used 
to calculate the weights of similarity between the pixel values. The detailed process is 
illustrated in Fig. 5: 
 

 
Fig. 5. Flowchart of brightness adjustment data enhancement algorithm based on split filtering 

 
By implementing the data augmentation algorithm, this study not only achieved 

diversification and enrichment of the dataset but also significantly reduced the negative impact 
of noise and uneven illumination on model training. This strategy effectively enhanced the 
model's resistance to interference and improved the network's accuracy and reliability in 
PCBA defect detection.  

4. Experiment and Analysis 

4.1 Training conditions 
To validate the effectiveness and advancement of this paper's improvement for PCBA 

defect detection, the experimental setup includes an Intel(R) Core(TM) i7-12700 CPU and a 
GeForce RTX 3070 GPU. Python is the programming language utilized, and the deep learning 
framework used is Pytorch 1.10.2. The datasets utilized in this experiment are all 
independently produced and processed using a data enhancement algorithm, totaling 5852 
sheets. Among these, 4780 sheets comprise the training set, 560 sheets are allocated for the 
validation set, and the test set consists of 512 sheets. The dataset encompasses five categories 
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of defects, with each image containing zero to multiple defects. The input size of the images 
is set to 640*640 pixels, and the batch size is configured as 8. Finally, the number of epochs 
is set to 300. 

4.2 Assessment of Indicators 
To assess the performance of the trained model from a professional and objective 

perspective, this paper utilizes commonly employed evaluation metrics, which include 
precision (P), recall (R), average precision (AP), mean average precision (mAP), floating point 
operations (FLOPs), frames per second (FPS), and model size.  

When the detection frame's intersection and concurrency ratio IoU to the actual frame is more 
significant than 0.5, the sample is recorded as a true positive (TP); otherwise, it is recorded as 
a false positive (FP). A false negative (FN) denotes a positive sample misclassified as 
unfavorable. Precision (P) is the proportion of actual positive samples to all detected targets 
of that type, and recall (R) is the proportion of accurate positive samples to all actual positive 
samples. P and R are shown in (4) and (5):  

 

 ( ) TPprecision P
TP FP

=
+

 (4) 

 ( ) TPrecall R
TP FN

=
+

 (5) 

A two-dimensional P-R curve is drawn with precision P represented on the vertical axis 
and recall R on the horizontal axis. The area of the region enclosed by the P-R curve and the 
coordinate axis is the value of AP. Its formula is as follows:   

 

 ( )
1

i i i i0
AP P R dR= ∫  (6) 

After figuring out the AP values for each category, the mAP value is obtained by averaging 
all AP values. The mAP formula is calculated as follows: 

 

 
n

i
i 1

1mAP AP
n =

= ∑  (7) 

The AP value can be utilized to comprehensively assess both P and R, measuring detection 
performance. The mAP, the average of all AP values, evaluates the algorithm's overall 
detection performance. In the context of the YOLO algorithm, the values of these two metrics 
reflect the detection accuracy of the model, with higher values indicating better performance. 

4.3 Performance analysis 
While ensuring that the computer configuration and initial training conditions are the same, 

this paper conducts experiments comparing the enhanced model with other classical YOLO 
models. The efficacy of the enhanced network model is demonstrated through the results 
presented in Table 1. It is evident that the enhanced YOLOv7 model not only outperforms 
other classic network models in terms of mAP and FPS but also has a smaller model size. 
Additionally, when fed images of the same size, the number of floating-point operations and 
the size of parameters are smaller than those of other models, demonstrating the superiority of 
our algorithm. Fig. 6 illustrates the variation of parameter values during the training process. 
The mAP values gradually increase while the loss function values steadily decrease. It can be 
observed that the model, enhanced in this study, not only achieves an optimal loss function 
curve but also attains the highest mAP values. 
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Table 1. The performance between the method proposed and the previous YOLO model 
Method Model mAP FPS FLOPs Params 

YOLOv3 123.5M 0.701 36.8 154.6 61.5M 

YOLOv4 100M 0.685 42 119 52.5M 

YOLOv5s 14.4M 0.672 102 16.3 7.06M 

YOLOv7 74.9M 0.709 47 103.2 36.5M 

Ours 12.4M 0.808 164 13.1 6.06M 

 

 
Fig. 6. Comparison of training parameters 

 
We use the improved model to detect defects on PCBA, as illustrated in Fig. 7. The results 

demonstrate that Our method identifies all the defects accurately and operates without any 
identification errors. These findings further validate the feasibility of the proposed method. 
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Fig. 7. PCBA test results 

4.4 Ablation experiments 
In the present manuscript, we propose several improvement methods. To demonstrate the 

advantages and effects of each method on the model, we conducted the following experiments, 
with the results presented in Table 2. 
 

Table 2. Role of different approaches 
Method Model mAP FPS FLOPs Params 

YOLOv7 74.9M 0.709 47 103.2 36.5M 

YOLOv7+BASF-
DAA 

74.9M 0.771 53 103.2 36.5M 

YOLOv7+SEAM 12.4M 0.746 154 13.1 6.06M 

Ours 12.4M 0.808 164 13.1 6.06M 

 
After processing with the data enhancement algorithm, the number of photographs in the 

dataset increased. At the same time, the interfering information decreased, resulting in an 
increase in the mean mAP to 0.771, which is 8.75% higher than without the data enhancement 
algorithm. Adding the data enhancement algorithm improves recognition accuracy without 
increasing computational demands or model size. 

After integrating the SEAM into the model head and applying layer pruning for 
simplification, experimental results indicate a substantial reduction in model size and 
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parameters. This optimization yields a nearly 2.5-fold increase in the model's FPS and reduces 
the FLOPs to as low as 12.7. These findings demonstrate that incorporating the SEAM and 
implementing layer pruning can significantly enhance FPS without compromising 
performance. 

Fig. 8 illustrates the performance improvement across each category following model 
integration. The modified model demonstrates a notable enhancement in mAP values. The 
analysis and comparison of each category reveal that the impact of algorithm optimization 
varies among different classes. Notably, there has been a significant improvement in the 
categories of Capacitance Missed, Resistance Missed, Electrolytic Capacitance Opposite 
Polarity, and Triode Missed. Additionally, the recognition capability for Electrolytic 
Capacitance Missed remains excellent. 

 

 
 

Fig. 8. Before and after improvement of AP values for each category 

5. Conclusion 
To address detection challenges in PCBA defects, including missed and false detections, 

we propose a novel defect detection algorithm for PCBA based on YOLOv7. We introduce 
the Mish activation function, which improves information propagation through the network 
and enhances detection performance. Additionally, the SEAM has been integrated into the 
model's head, enabling a greater focus on small targets and improving recognition. The SIoU 
is employed to replace the CIoU in YOLOv7, thereby improving the efficiency of performance 
measurement, addressing uncertainty, and enhancing the model's robustness. A brightness 
adjustment data enhancement algorithm based on split filtering is proposed for data processing 
to optimize the dataset and improve the quality of training. Experimental results demonstrate 
that this method achieves both higher FPS and mAP. These findings indicate that our model 
can maintain high recognition accuracy despite low computational requirements. Compared 
to other models discussed in this paper, various evaluation metrics show that our method 
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performs better and holds significant reference value for PCBA defect detection in the industry. 
In the future, we will continue refining our algorithm to detect a broader range of defects 
applicable in a wider variety of scenarios. 
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